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ABSTRACT 

Machine learning (ML)-based classification techniques offer promising solutions for identifying 

failures in Intelligent Electronic Devices (IEDs) within smart power grid systems. These systems are 

integral components of modern power grids, facilitating efficient energy management and ensuring 

reliable electricity supply. However, the complexity and interconnected nature of smart grid 

infrastructures make them susceptible to various failures and attacks, necessitating robust fault 

detection mechanisms.   Another crucial application lies in cybersecurity for smart grids, where ML 

algorithms can aid in detecting and mitigating attacks targeting IEDs. By analyzing network traffic 

patterns and abnormal behaviors in IEDs, ML models can identify suspicious activities indicative of 

failures, such as unauthorized access attempts or tampering with device configurations. This proactive 

approach to cybersecurity enhances the resilience of smart grid systems against malicious threats, 

safeguarding critical infrastructure and ensuring uninterrupted electricity supply to consumers.  

Current methods for detecting IED failures in smart power grid systems often rely on rule-based 

approaches or manual inspection, which are labor-intensive and prone to errors. These traditional 

techniques may overlook subtle patterns or anomalies indicative of emerging failures, leading to 

delayed responses and increased risk of system downtime. Additionally, existing fault detection 

mechanisms may struggle to differentiate between genuine failures and benign fluctuations in system 

behavior, resulting in false alarms and unnecessary maintenance interventions. To address the 

limitations of existing fault detection methods, this work proposes a novel ML-based classification 

system for identifying failures in IEDs within smart power grid systems. The proposed system 

leverages supervised learning algorithms trained on labeled datasets derived from power system 

attack scenarios. By analyzing various features extracted from IED data, such as voltage fluctuations, 

current readings, and communication patterns, our ML models can accurately classify different types 

of failures, including equipment malfunctions, failures, and operational errors.  

Keywords: Power Distribution Networks, Smart Grid, Intelligent Electronic Devices (IEDs), Fault 

Detection, Smart Power Grid Systems. 

1. INTRODUCTION 

In the realm of modern power grids, Intelligent Electronic Devices (IEDs) play a pivotal role in 

ensuring efficient energy management and reliable electricity supply. However, the intricate nature of 

smart grid infrastructures renders them susceptible to diverse failures and potential cyberattacks. 

Traditional methods of detecting IED failures often rely on rule-based approaches or manual 

inspection, which are labor-intensive and prone to errors. These methods may miss subtle patterns 

indicative of emerging failures, leading to delayed responses and heightened risks of system 

downtime. To address these shortcomings, this work proposes a novel approach: leveraging machine 

learning (ML)-based classification techniques to proactively identify failures in IEDs within smart 

power grid systems. By employing supervised learning algorithms trained on labeled datasets derived 
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from power system attack scenarios, our ML models can accurately classify various types of failures, 

including equipment malfunctions, failures, and operational errors. This proactive approach enhances 

the resilience of smart grid systems against both failures and malicious threats, ensuring uninterrupted 

electricity supply to consumers. 

 

Fig. 1: Detecting Anomaly in Power Distribution. 

The complexity and interconnected nature of smart grid infrastructures pose significant challenges in 

effectively detecting and mitigating failures in Intelligent Electronic Devices (IEDs). Existing 

methods for identifying IED failures, such as rule-based approaches or manual inspection, are often 

labor-intensive, error-prone, and may overlook subtle patterns indicative of emerging failures. 

Moreover, distinguishing between genuine failures and benign fluctuations in system behavior 

remains a challenge, leading to false alarms and unnecessary maintenance interventions. Thus, there is 

a critical need for robust fault detection mechanisms that can accurately classify different types of 

failures in IEDs, enabling proactive maintenance and enhancing the resilience of smart grid systems 

against both operational errors and malicious attacks. 

2. LITERATURE SURVEY 

Condition Monitoring (CM) of electrical power grids is an essential anomaly prevention process 

enabling higher quality continuous delivery of electrical energy with hopefully zero downtimes [1, 2]. 

Today's advanced computing and networking technologies make power grids CM more ergonomic 

and an accessible centralized process led by the so-called Internet of Things (IoT) technologies [3], 

[4], [5]. SGs are a combination of two interconnected layers, in particular, a cyber-layer and a 

physical one [6]. The cyber layer is a blend of computers networking technologies and necessary 

monitoring applications and software. The physical layer compromises physical elements and field 

devices (e.g., smart sensors, actuators, generators, programmable logic controllers (PLCs), networking 

cables, and computers) [7]. More precisely, the cyber layer software is used to control different 

industrial processes in the physical layer through specific industrial networking protocols of Industrial 

IoT (IIoT). Plugging in the two layers to the Internet makes the entire SG network processes more 

vulnerable to cyberthreats. Cyberattacks are the attempts of sufficiently qualified individuals known 

as cybercriminals to destroy or maliciously use the cyberphysical system by targeting one of the CIA 

security pillars via unauthorised access to cybersecurity systems [8, 9]. Confidentiality attacks require 

unauthorised access via someone's credentials to private information with the purpose of malicious 

activity. Integrity attacks refer to intentional attacks that tend to modify data content leading to 

damaging the system [9, 10]. Availability attacks are time-delayed attacks that are usually Denial of 

Service (DoS) that tries to slow down data traffic and alter the whole process [11, 12]. Additionally, 

DoS attacks may also gain time to further proceed with confidentiality or integrity attacks [13]. 

Generally speaking, due to much vulnerability such as lack of authentication, data encryption, and 

continuous data integrity checking, SGs are vulnerable to one of the aforementioned threats under the 
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CIA umbrella. Therefore, necessary security, prevention, and process backup plans are top priorities 

for the cyberphysical system immunity against any possible adversary. In this context, cyberthreats 

detection and mitigation can be found under two categories; Human-Centric (HC) and Non-Human 

Centric (NHC) approaches [10]. HC approaches (i.e., authentication, training, passwords, awareness, 

and updates) refer to the involving of continuous training and expanding of human awareness about 

necessary new security precautions. NHC (i.e., blockchain, cloud computing, game theory [14], and 

ML, etc.) signify different modeling procedures and automatic detection via specifically designed 

hardware and software. Ongoing human awareness training and updates on safety precautions play an 

important role in preventing data theft. In fact, a simple daily mistake could be an easy cause of a data 

breach. Clicking wrong spam links, giving confidential information to inappropriate persons, or more 

generally, hesitantly ignoring security policies, are some common human errors, to mention a few 

[15].On the other hand, NHC approaches are very important in diagnosing (i.e. detecting and 

identifying) data traffic and making use of any suspicious false data symptoms when HC approaches 

are unable to cope with such digital threats. Blockchain digital ledgers are able to mitigate data 

changes, theft, or cheating by following certain specific rules for recording information. However, 

their installation and duplication across the entire SG nodes make it highly expensive especially in 

terms of energy consumption. Besides, private blockchains witnessed low-security efficiency 

precautions [16], [17], [18]. Cloud computing security-based has the advantage of allowing higher 

security features under low latency and computational costs. However, it needs higher bandwidth as 

well as it completely depends on the web service provider [19]. Although classical residue-based 

modeling and simulation techniques separate the two layers (i.e., cyber and physical layers), which 

are no longer effective in establishing the behavior of both simultaneously. Contrariwise, ML 

modeling procedures of attack behaviors based on historical data show promising performances and 

become leading alternatives in the cybersecurity field. It has the advantage of higher accuracy, ability 

to adapt to dynamic data, fewer deployment costs, and plenty of available blackbox models easy to be 

directly used [20].The motivations for industrial data processing have been the same for decades, 

namely to increase the revenue of investment by improving efficiency (i.e., by increasing 

productivity, and decreasing scrap, waste and energy usage), extending system lifetime, as well as 

enhancing safety and security. Sustainability has become yet another focal point of modern industry. 

As people acknowledged the necessity of distributed data collection and massive data processing in 

various industrial areas, the research and innovation domain of IIoT (Industrial Internet of Things) 

began to thrive. Its business drive was promoted by the Industry 4.0 initiative, whereas its applications 

were extended from the very much overlapping Cyber-Physical Systems (CPS) domain. There is no 

generic, de-facto architecture for IIoT systems, although a layered approach is followed by domain 

experts. The purpose of splitting the layers could vary from communication types due to infrastructure 

need to the ecosystem stakeholder point of view; hence three, four or five layers can be identified 

provides a layered architectural view which shows the strong separation of technologies between the 

layers. It also indicates the different security approaches at the different layers [21]. 

While machine learning is exploited in various IIoT application areas, it is used only on a small subset 

of target areas extensively (see Figure 2). Depending on the application area, there are various 

purposes for processing industrial data. These include decision support, optimization, prediction, 

anomaly detection, classification, and clustering, just to name a few. In order to achieve the desired 

results, we need data—which are generally available for industrial players if IIoT-based data 

collection is in place—and we need physical resources for data processing—which are now available 

mostly due to the boom in GPU production. Because data and resources have been made available, we 

are able to use ML (Machine Learning) methods to achieve better results than ever before in the above 

areas. In terms of finding details on these methods, the first resources to turn to are, naturally, 
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textbooks. There are several great books on machine learning in general [22,23,24], and on modern 

tools regarding their application [25,26,27,28]. Further, we can find survey papers on utilizing 

machine learning in the industry. The authors of [29] provide a survey of the upcoming wave of 

machine learning in smart manufacturing. The specific topic of tackling faults by machine learning 

(ML) in the industry 4.0 era are surveyed in [30]. In a paper on machine learning multi-agent systems 

[31], the authors focus exclusively on their application in the oil and gas industry. Regarding different 

levels of industry 4.0, [32] focuses on ML methods applied in production planning and control. 

Similarly, a review of ML methods for the optimization of production processes is provided in [33]. 

To provide comparison with the topic of our current article, we can find more specific papers 

summarizing ML methods for smart production in general [34], or that review ML for production 

energy efficiency [35]. The authors of [36] provide a comprehensive overview of prognostic methods 

in the area of Industry 4.0. The authors of [37] focus on sustainability and predictive maintenance. 

Regarding reliability engineering and safety, the authors of [38] provide a targeted survey. 

Furthermore, ML support on safety assurance is surveyed in [39]. 

3. PROPOSED SYSTEM 

The process begins by importing essential libraries, including Pandas for data manipulation, 

NumPy for numerical computations, Matplotlib and Seaborn for visualization, and scikit-learn 

modules for machine learning tasks. The dataset is then loaded from a CSV file, missing 

values are handled, and categorical variables are encoded using LabelEncoder. The data is 

split into features (X) and the target variable (y), followed by exploratory data analysis using 

count plots to visualize class distribution. Feature data is standardized using StandardScaler 

to ensure uniform scaling. Two machine learning models—LGBMClassifier and 

BaggingClassifier are trained on the processed training data. Their performance is evaluated 

using metrics such as accuracy, precision, recall, F1-score, and confusion matrices for better 

insight into classification results.  

 

Fig. 2: Block Diagram. 

Trained models are saved using joblib for future use. Model performance is compared to determine 

the best-performing algorithm. Finally, test data from "test.csv" is preprocessed similarly, and 

predictions are made using the trained models, with each test row printed alongside its predicted class 

(Attack or Normal). 

Random Forest is a powerful supervised machine learning algorithm used for both 

classification and regression tasks. It leverages the ensemble learning technique of bagging 
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(bootstrap aggregating), where multiple decision trees are trained on random subsets of the 

dataset created through sampling with replacement. Each tree generates a prediction, and the 

final output is determined through majority voting (for classification) or averaging (for 

regression). This method improves accuracy, reduces overfitting, and handles large datasets 

efficiently. Key features include parallelization, resistance to the curse of dimensionality, 

robustness to missing data, and stability through aggregation. Random Forest introduces 

diversity by considering only a random subset of features at each split, making it more robust 

than standard Bagging Classifiers. 

 

Fig. 3: Random Forest algorithm 

While both Bagging and Random Forest reduce variance and improve generalization, 

Random Forest adds feature randomness to further decorrelate trees. Despite its 

computational cost, it performs well even in noisy environments. Random Forest is widely 

used in banking (loan risk), medicine (disease prediction), land use classification, and 

marketing (trend analysis), offering high accuracy, speed, and resilience in complex real-

world applications. 

4. RESULTS AND DISCUSSION 

Figure 4 shows the 

 LGBMClassifier Accuracy: This is the overall accuracy of the model on the test data. In this 

case, the accuracy is 75.27%, which means that the model correctly classified 75.27% of the 

instances in the test data. 

 LGBMClassifier Precision: Precision is a metric that measures the proportion of positive 

predictions that were actually correct. A high precision means that most of the instances 

labeled as positive by the model were truly positive. In this case, the precision for the 

"Attack" class is 0.85 and 0.70 for the "Natural" class. This means that out of all the instances 

that the model predicted as "Attack", 85% were actually attacks, and out of all the instances 

predicted as "Natural", 70% were actually natural. 

 LGBMClassifier Recall: Recall is a metric that measures the proportion of actual positive 

instances that were identified correctly by the model. A high recall means that the model was 

able to find most of the positive instances. In this case, the recall for the "Attack" class is 0.63 

and 0.88 for the "Natural" class. This means that out of all the actual attack instances in the 

data, the model identified 63%, and out of all the actual natural instances, it identified 88%. 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, June, 2025 

ISSN No: 2250-3676 www.ijesat.com Page 101  

 

 

 LGBMClassifier F1-score: The F1-score is a harmonic mean of precision and recall. It's a 

way to balance between the two metrics and get a single measure of the model's performance. 

In this case, the F1-score for the "Attack" class is 0.72 and 0.78 for the "Natural" class. 

 The weighted average at the bottom of the report shows the overall precision, recall, and F1-

score across both classes, weighted by the number of instances in each class. 

 The macro average is another way to calculate average precision, recall, and F1-score, but it 

gives equal weight to each class regardless of the number of instances. 

 The support column shows the number of instances in each class. In this case, there are 

slightly more instances of the "Natural" class than the "Attack" class. 

The classification report suggests that the LightGBM model is performing moderately well on this 

binary classification task. It has a good accuracy and is able to identify a reasonable proportion of 

both "Attack" and "Natural" instances. However, the recall for the "Attack" class is a bit lower than 

the recall for the "Natural" class, which suggests that the model might be missing some of the actual 

attack instances. 

 

 

Fig. 4: Classification report (LGBM Classifer) 
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Fig. 5: Confusion Matrix (LGBM Classifier) 

Figure 5 shows the 

 The Rows represent the actual classes of the data samples. In this case, the rows represent 

"Natural" and "Attack". 

 Columns represent the classes predicted by the model. In this case, the columns represent 

"Natural" and "Attack" classes as well. 

 The values in each cell of the confusion matrix represent the number of data samples that 

belong to a particular class (row) but were predicted to belong to another class (column). 

 Top-left cell (4669): This cell represents the number of data samples that were actually 

Natural and were correctly predicted as Natural by the model. There are 4669 of these 

samples. 

 Top-right cell (10657): This cell represents the number of data samples that were actually 

Natural but were incorrectly predicted as Attack by the model. There are 10657 of these 

samples. 

 Bottom-left cell (8000): This cell represents the number of data samples that were actually 

Attack but were incorrectly predicted as Natural by the model. There are 8000 of these 

samples. 

 Bottom-right cell (1461): This cell represents the number of data samples that were actually 

Attack and were correctly predicted as Attack by the model. There are 1461 of these samples. 
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 The sum of the values in each row represents the total number of data samples in the 

corresponding actual class. 

 The sum of the values in each column represents the total number of predictions made for the 

corresponding predicted class. 

 Ideally, we want most of the values to be concentrated on the diagonal of the confusion 

matrix, where the actual class and the predicted class match. In this case, the model seems to 

be performing better at predicting Natural instances correctly (4669) compared to Attack 

instances (1461). 

 This confusion matrix suggests that the model has a higher false positive rate for the "Attack" 

class (10657) than the "Natural" class (8000). This means that the model is misclassifying 

more Natural instances as Attack compared to Attack instances being misclassified as 

Natural. 

 

 

Fig. 6: Classification report (Bagging Classifier) 

Figure 6 shows a classification report using a Bagging Classifier model in machine learning. It 

appears to be the result of a binary classification task, where the model is trying to distinguish 

between two classes: "Attack" and "Natural". 

 Model loaded successfully: This message likely indicates that the Bagging Classifier model 

was successfully loaded from a file or created without errors. 

 BaggingClassifier Accuracy: This is the overall accuracy of the model on the test data. In 

this case, the accuracy is 93.96%, which means that the model correctly classified 93.96% of 

the instances in the test data. 

 BaggingClassifier Precision: Precision is a metric that measures the proportion of positive 

predictions that were actually correct. A high precision means that most of the instances 

labeled as positive by the model were truly positive. In this case, the precision for the 

"Attack" class is 0.93 and 0.95 for the "Natural" class. This means that out of all the instances 

that the model predicted as "Attack", 93% were actually attacks, and out of all the instances 

predicted as "Natural", 95% were actually natural. 
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 BaggingClassifier Recall: Recall is a metric that measures the proportion of actual positive 

instances that were identified correctly by the model. A high recall means that the model was 

able to find most of the positive instances. In this case, the recall for the "Attack" class is 0.96 

and 0.92 for the "Natural" class. This means that out of all the actual attack instances in the 

data, the model identified 96%, and out of all the actual natural instances, it identified 92%. 

 BaggingClassifier F1-score: The F1-score is a harmonic mean of precision and recall. It's a 

way to balance between the two metrics and get a single measure of the model's performance. 

In this case, the F1-score for the "Attack" class is 0.94 and 0.94 for the "Natural" class. 

 

 The weighted average at the bottom of the report shows the overall precision, recall, and F1-

score across both classes, weighted by the number of instances in each class. 

 The macro average is another way to calculate average precision, recall, and F1-score, but it 

gives equal weight to each class regardless of the number of instances. 

 The support column shows the number of instances in each class. In this case, there are 

almost the same number of instances of the "Natural" class (12118) and the "Attack" class 

(12669). 

The classification report suggests that the Bagging Classifier model is performing well on this binary 

classification task. It has a high accuracy and is able to identify a significant proportion of both 

"Attack" and "Natural" instances. The precision, recall, and F1-score are all very similar across the 

two classes, indicating a balanced performance. 
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Fig. 7: Confusion Matrix (Bagging Classifier) 

Figure 7 shows the 

 Top-left cell (12000): This cell represents the number of data samples that were actually Natural 

and were correctly predicted as Natural by the model. There are 12000 of these samples. 

 Top-right cell (1000): This cell represents the number of data samples that were actually Natural 

but were incorrectly predicted as Attack by the model. There are 1000 of these samples. 

 Bottom-left cell (4000): This cell represents the number of data samples that were actually Attack 

but were incorrectly predicted as Natural by the model. There are 4000 of these samples. 

 Bottom-right cell (526): This cell represents the number of data samples that were actually 

Attack and were correctly predicted as Attack by the model. There are 526 of these samples. 

 The sum of the values in each row represents the total number of data samples in the 

corresponding actual class. 

 The sum of the values in each column represents the total number of predictions made for the 

corresponding predicted class. 

 Ideally, we want most of the values to be concentrated on the diagonal of the confusion matrix, 

where the actual class and the predicted class match. In this case, the model seems to be 

performing well at predicting both Natural (12000) and Attack (526) instances correctly. 

 This confusion matrix suggests that the model has a lower false positive rate (1000) for the 

"Natural" class compared to the "Attack" class (4000). This means that the model is 

misclassifying more Attack instances as Natural compared to Natural instances being 

misclassified as Attack. 

 

Fig. 8: Comparison of LGBM & Bagging Classifier 

Figure 8 shows the Bagging Classifier outperforms the LightGBM Classifier across multiple key 

metrics: 

Accuracy: Bagging Classifier achieves an accuracy of 89.26%, significantly higher than the 

LightGBM Classifier's 75.27%. This implies that the Bagging Classifier makes nearly 14% more 

correct predictions than the LightGBM Classifier. 

Precision: For both "Attack" and "Natural" classes, the Bagging Classifier demonstrates higher 

precision compared to the LightGBM Classifier. Specifically, it achieves a precision of 0.93 for 

"Attack" and 0.95 for "Natural," while the LightGBM Classifier achieves 0.85 and 0.70 for "Attack" 

and "Natural," respectively. 

Recall:  The Bagging Classifier exhibits higher recall for the "Attack" class (0.96) compared to the 

LightGBM Classifier (0.63). However, it slightly lags behind in recall for the "Natural" class (0.92) 

compared to the LightGBM Classifier's 0.88. 
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F1-Score: Across both classes, the Bagging Classifier attains substantially higher F1-scores compared 

to the LightGBM Classifier. For the "Attack" class, it achieves 0.94, while for the "Natural" class, it 

also reaches 0.94. In contrast, the LightGBM Classifier achieves F1-scores of 0.72 and 0.78 for 

"Attack" and "Natural," respectively. 

The Bagging Classifier demonstrates superior performance across all metrics, making it the preferable 

choice for this classification task. However, it's essential to consider that the choice of the best model 

can depend on the specific dataset and task requirements. 

5. CONCLUSION 

The integration of machine learning into smart grid maintenance significantly enhances the proactive 

management of Intelligent Electronic Device (IED) failures. This study implemented a structured 

framework involving data preprocessing, including handling missing values and encoding categorical 

variables, followed by exploratory data analysis to understand failure patterns. Classification models 

such as RandomForestClassifier, BaggingClassifier, and LGBMClassifier were trained on a balanced 

dataset using SMOTE to address class imbalance. Evaluation using accuracy, precision, recall, and 

F1-score revealed that LGBMClassifier and BaggingClassifier delivered strong performance, 

effectively distinguishing between failure types as shown by their confusion matrices. The trained 

models were saved for deployment, enabling real-time failure prediction and facilitating timely 

maintenance. With its scalability and high accuracy, the framework is well-suited for integration into 

smart grid systems, offering utility companies a reliable tool for improving operational efficiency and 

reducing downtime. 
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